3.103 \(\int \frac{1}{(a+b \sin ^2(c+d x))^2} \, dx\)

Optimal. Leaf size=87 \[ \frac{(2 a+b) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{2 a^{3/2} d (a+b)^{3/2}}+\frac{b \sin (c+d x) \cos (c+d x)}{2 a d (a+b) \left (a+b \sin ^2(c+d x)\right )} \]

[Out]

((2*a + b)*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(a + b)^(3/2)*d) + (b*Cos[c + d*x]*Sin[c + d
*x])/(2*a*(a + b)*d*(a + b*Sin[c + d*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.0625083, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3184, 12, 3181, 205} \[ \frac{(2 a+b) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{2 a^{3/2} d (a+b)^{3/2}}+\frac{b \sin (c+d x) \cos (c+d x)}{2 a d (a+b) \left (a+b \sin ^2(c+d x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x]^2)^(-2),x]

[Out]

((2*a + b)*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(a + b)^(3/2)*d) + (b*Cos[c + d*x]*Sin[c + d
*x])/(2*a*(a + b)*d*(a + b*Sin[c + d*x]^2))

Rule 3184

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> -Simp[(b*Cos[e + f*x]*Sin[e + f*x]*(a + b*Sin[
e + f*x]^2)^(p + 1))/(2*a*f*(p + 1)*(a + b)), x] + Dist[1/(2*a*(p + 1)*(a + b)), Int[(a + b*Sin[e + f*x]^2)^(p
 + 1)*Simp[2*a*(p + 1) + b*(2*p + 3) - 2*b*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] && NeQ
[a + b, 0] && LtQ[p, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3181

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist
[ff/f, Subst[Int[1/(a + (a + b)*ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b \sin ^2(c+d x)\right )^2} \, dx &=\frac{b \cos (c+d x) \sin (c+d x)}{2 a (a+b) d \left (a+b \sin ^2(c+d x)\right )}-\frac{\int \frac{-2 a-b}{a+b \sin ^2(c+d x)} \, dx}{2 a (a+b)}\\ &=\frac{b \cos (c+d x) \sin (c+d x)}{2 a (a+b) d \left (a+b \sin ^2(c+d x)\right )}+\frac{(2 a+b) \int \frac{1}{a+b \sin ^2(c+d x)} \, dx}{2 a (a+b)}\\ &=\frac{b \cos (c+d x) \sin (c+d x)}{2 a (a+b) d \left (a+b \sin ^2(c+d x)\right )}+\frac{(2 a+b) \operatorname{Subst}\left (\int \frac{1}{a+(a+b) x^2} \, dx,x,\tan (c+d x)\right )}{2 a (a+b) d}\\ &=\frac{(2 a+b) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{2 a^{3/2} (a+b)^{3/2} d}+\frac{b \cos (c+d x) \sin (c+d x)}{2 a (a+b) d \left (a+b \sin ^2(c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.41682, size = 84, normalized size = 0.97 \[ \frac{\frac{(2 a+b) \tan ^{-1}\left (\frac{\sqrt{a+b} \tan (c+d x)}{\sqrt{a}}\right )}{(a+b)^{3/2}}+\frac{\sqrt{a} b \sin (2 (c+d x))}{(a+b) (2 a-b \cos (2 (c+d x))+b)}}{2 a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sin[c + d*x]^2)^(-2),x]

[Out]

(((2*a + b)*ArcTan[(Sqrt[a + b]*Tan[c + d*x])/Sqrt[a]])/(a + b)^(3/2) + (Sqrt[a]*b*Sin[2*(c + d*x)])/((a + b)*
(2*a + b - b*Cos[2*(c + d*x)])))/(2*a^(3/2)*d)

________________________________________________________________________________________

Maple [A]  time = 0.089, size = 119, normalized size = 1.4 \begin{align*}{\frac{b\tan \left ( dx+c \right ) }{2\,da \left ( a+b \right ) \left ( a \left ( \tan \left ( dx+c \right ) \right ) ^{2}+ \left ( \tan \left ( dx+c \right ) \right ) ^{2}b+a \right ) }}+{\frac{1}{d \left ( a+b \right ) }\arctan \left ({ \left ( a+b \right ) \tan \left ( dx+c \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}}+{\frac{b}{2\,da \left ( a+b \right ) }\arctan \left ({ \left ( a+b \right ) \tan \left ( dx+c \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \right ){\frac{1}{\sqrt{a \left ( a+b \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+sin(d*x+c)^2*b)^2,x)

[Out]

1/2/d*b/a/(a+b)*tan(d*x+c)/(a*tan(d*x+c)^2+tan(d*x+c)^2*b+a)+1/d/(a+b)/(a*(a+b))^(1/2)*arctan((a+b)*tan(d*x+c)
/(a*(a+b))^(1/2))+1/2/d/a/(a+b)/(a*(a+b))^(1/2)*arctan((a+b)*tan(d*x+c)/(a*(a+b))^(1/2))*b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.88266, size = 1060, normalized size = 12.18 \begin{align*} \left [-\frac{4 \,{\left (a^{2} b + a b^{2}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left ({\left (2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - 3 \, a b - b^{2}\right )} \sqrt{-a^{2} - a b} \log \left (\frac{{\left (8 \, a^{2} + 8 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{4} - 2 \,{\left (4 \, a^{2} + 5 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + 4 \,{\left ({\left (2 \, a + b\right )} \cos \left (d x + c\right )^{3} -{\left (a + b\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} - a b} \sin \left (d x + c\right ) + a^{2} + 2 \, a b + b^{2}}{b^{2} \cos \left (d x + c\right )^{4} - 2 \,{\left (a b + b^{2}\right )} \cos \left (d x + c\right )^{2} + a^{2} + 2 \, a b + b^{2}}\right )}{8 \,{\left ({\left (a^{4} b + 2 \, a^{3} b^{2} + a^{2} b^{3}\right )} d \cos \left (d x + c\right )^{2} -{\left (a^{5} + 3 \, a^{4} b + 3 \, a^{3} b^{2} + a^{2} b^{3}\right )} d\right )}}, -\frac{2 \,{\left (a^{2} b + a b^{2}\right )} \cos \left (d x + c\right ) \sin \left (d x + c\right ) +{\left ({\left (2 \, a b + b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, a^{2} - 3 \, a b - b^{2}\right )} \sqrt{a^{2} + a b} \arctan \left (\frac{{\left (2 \, a + b\right )} \cos \left (d x + c\right )^{2} - a - b}{2 \, \sqrt{a^{2} + a b} \cos \left (d x + c\right ) \sin \left (d x + c\right )}\right )}{4 \,{\left ({\left (a^{4} b + 2 \, a^{3} b^{2} + a^{2} b^{3}\right )} d \cos \left (d x + c\right )^{2} -{\left (a^{5} + 3 \, a^{4} b + 3 \, a^{3} b^{2} + a^{2} b^{3}\right )} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[-1/8*(4*(a^2*b + a*b^2)*cos(d*x + c)*sin(d*x + c) + ((2*a*b + b^2)*cos(d*x + c)^2 - 2*a^2 - 3*a*b - b^2)*sqrt
(-a^2 - a*b)*log(((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^4 - 2*(4*a^2 + 5*a*b + b^2)*cos(d*x + c)^2 + 4*((2*a + b)
*cos(d*x + c)^3 - (a + b)*cos(d*x + c))*sqrt(-a^2 - a*b)*sin(d*x + c) + a^2 + 2*a*b + b^2)/(b^2*cos(d*x + c)^4
 - 2*(a*b + b^2)*cos(d*x + c)^2 + a^2 + 2*a*b + b^2)))/((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cos(d*x + c)^2 - (a^5
+ 3*a^4*b + 3*a^3*b^2 + a^2*b^3)*d), -1/4*(2*(a^2*b + a*b^2)*cos(d*x + c)*sin(d*x + c) + ((2*a*b + b^2)*cos(d*
x + c)^2 - 2*a^2 - 3*a*b - b^2)*sqrt(a^2 + a*b)*arctan(1/2*((2*a + b)*cos(d*x + c)^2 - a - b)/(sqrt(a^2 + a*b)
*cos(d*x + c)*sin(d*x + c))))/((a^4*b + 2*a^3*b^2 + a^2*b^3)*d*cos(d*x + c)^2 - (a^5 + 3*a^4*b + 3*a^3*b^2 + a
^2*b^3)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.10842, size = 153, normalized size = 1.76 \begin{align*} \frac{\frac{{\left (\pi \left \lfloor \frac{d x + c}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (2 \, a + 2 \, b\right ) + \arctan \left (\frac{a \tan \left (d x + c\right ) + b \tan \left (d x + c\right )}{\sqrt{a^{2} + a b}}\right )\right )}{\left (2 \, a + b\right )}}{{\left (a^{2} + a b\right )}^{\frac{3}{2}}} + \frac{b \tan \left (d x + c\right )}{{\left (a \tan \left (d x + c\right )^{2} + b \tan \left (d x + c\right )^{2} + a\right )}{\left (a^{2} + a b\right )}}}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/2*((pi*floor((d*x + c)/pi + 1/2)*sgn(2*a + 2*b) + arctan((a*tan(d*x + c) + b*tan(d*x + c))/sqrt(a^2 + a*b)))
*(2*a + b)/(a^2 + a*b)^(3/2) + b*tan(d*x + c)/((a*tan(d*x + c)^2 + b*tan(d*x + c)^2 + a)*(a^2 + a*b)))/d